A Unified Model for Soft Linguistic Reordering Constraints in Statistical Machine Translation
نویسندگان
چکیده
This paper explores a simple and effective unified framework for incorporating soft linguistic reordering constraints into a hierarchical phrase-based translation system: 1) a syntactic reordering model that explores reorderings for context free grammar rules; and 2) a semantic reordering model that focuses on the reordering of predicate-argument structures. We develop novel features based on both models and use them as soft constraints to guide the translation process. Experiments on Chinese-English translation show that the reordering approach can significantly improve a state-of-the-art hierarchical phrase-based translation system. However, the gain achieved by the semantic reordering model is limited in the presence of the syntactic reordering model, and we therefore provide a detailed analysis of the behavior differences between the two.
منابع مشابه
A Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملNovel Reordering Approaches in Phrase-Based Statistical Machine Translation
This paper presents novel approaches to reordering in phrase-based statistical machine translation. We perform consistent reordering of source sentences in training and estimate a statistical translation model. Using this model, we follow a phrase-based monotonic machine translation approach, for which we develop an efficient and flexible reordering framework that allows to easily introduce dif...
متن کاملFine-Grained Linguistic Soft Constraints on Statistical Natural Language Processing Models
Title of dissertation: Fine-Grained Linguistic Soft Constraints on Statistical Natural Language Processing Models Yuval Marton, Doctor of Philosophy, 2009 Dissertation directed by: Professor Philip Resnik, Department of Linguistics and Institute for Advanced Computer Studies This dissertation focuses on effective combination of data-driven natural language processing (NLP) approaches with lingu...
متن کاملFiltering Syntactic Constraints for Statistical Machine Translation
Source language parse trees offer very useful but imperfect reordering constraints for statistical machine translation. A lot of effort has been made for soft applications of syntactic constraints. We alternatively propose the selective use of syntactic constraints. A classifier is built automatically to decide whether a node in the parse trees should be used as a reordering constraint or not. ...
متن کاملLearning Bilingual Linguistic Reordering Model for Statistical Machine Translation
In this paper, we propose a method for learning reordering model for BTG-based statistical machine translation (SMT). The model focuses on linguistic features from bilingual phrases. Our method involves extracting reordering examples as well as features such as part-of-speech and word class from aligned parallel sentences. The features are classified with special considerations of phrase length...
متن کامل